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Abstract

Background: An assessment of population size and structure is an important first step in devising conservation and
management plans for endangered species. Many threatened animals are elusive, rare and live in habitats that prohibit
directly counting individuals. For example, a well-founded estimate of the number of great apes currently living in the wild
is lacking. Developing methods to obtain accurate population estimates for these species is a priority for their conservation
management. Genotyping non-invasively collected faecal samples is an effective way of evaluating a species’ population
size without disruption, and can also reveal details concerning population structure.

Methodology/Principal Findings: We opportunistically collected wild chimpanzee faecal samples for genetic capture-
recapture analyses over a four-year period in a 132 km2 area of Loango National Park, Gabon. Of the 444 samples, 46%
yielded sufficient quantities of DNA for genotyping analysis and the consequent identification of 121 individuals. Using
genetic capture-recapture, we estimate that 283 chimpanzees (range: 208–316) inhabited the research area between
February 2005 and July 2008. Since chimpanzee males are patrilocal and territorial, we genotyped samples from males using
variable Y-chromosome microsatellite markers and could infer that seven chimpanzee groups are present in the area.
Genetic information, in combination with field data, also suggested the occurrence of repeated cases of intergroup violence
and a probable group extinction.

Conclusions/Significance: The poor amplification success rate resulted in a limited number of recaptures and hence only
moderate precision (38%, measured as the entire width of the 95% confidence interval), but this was still similar to the best
results obtained using intensive nest count surveys of apes (40% to 63%). Genetic capture-recapture methods applied to
apes can provide a considerable amount of novel information on chimpanzee population size and structure with minimal
disturbance to the animals and represent a powerful complement to traditional field-based methods.
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Introduction

Obtaining reliable estimates of a species’ population size is an

important component in determining its conservation status and

provides a baseline for evaluating demographic change and/or

conservation success over time. Rare and elusive species living in

low visibility environments, like many of the world’s threatened

tropical animals, are usually impossible to count directly and

difficult or expensive to detect by indirect methods [1,2]. It is clear

that most African primates are in decline due to habitat

destruction [3,4], disease [5,6] and the commercial bushmeat

trade [7,8], although the extent and magnitude of this decline is

largely unknown [1,9-11].

Great apes have been particularly difficult to survey due to

their shy nature, low densities and occurrence in remote and

inaccessible areas. Furthermore, ethical and practical concerns

regarding trapping and collaring animals which are cognitively

advanced, socially-bonded and susceptible to human disease has

prevented the use of certain population estimation techniques,

such as direct counts or capture-mark-recapture [1,12]. To

circumvent these difficulties, ape surveys are done by counting

ape sleeping nests and/or dung piles along transects and

transforming these data into estimates of abundance or density.

However, due to variability in nest creation and decay rates, as

well as some difficulty in distinguishing the nests of sympatric

chimpanzees and gorillas, conversion of indirect ape signs into

ape numbers can yield accurate, but imprecise, estimates (i.e.

the true population size falls within the bounds of the minimum

and maximum estimate, but the width of this range of values is

large) [13-18]. Estimation of site-specific nest construction and

decay rates as well as information on nest location and forest

type for discriminate function analysis can improve the precision

of traditional ape surveys [14,15,17] but collecting these

additional data requires months of work by well-trained field

researchers. The resolution achieved is sufficient for detecting

catastrophic ape declines [3,7] but in order to detect more

subtle changes, improvements in ape monitoring methods are

required [1,14,16].
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Faeces, hair, feathers and other non-invasively collected

materials are reliable sources of DNA and have allowed

evolutionary and ecological processes to be inferred for elusive

species [19,20]. Genetic-based approaches require additional

laboratory expense, time and expertise compared to traditional

field-based methods, thus the amount of information derived

should be proportionately beneficial to the increased expense. By

generating individual-specific genotypes, non-invasive genetic

studies have evaluated the effective population size of species,

inferred their dispersal patterns and assessed their genetic diversity

and thus provide a powerful biomonitoring tool for populations

with minimal perturbation to the species under study [19-21]. A

comparison of genetic and standard indirect methods for

population estimation of various species shows that both over

and under estimation of the true population size occurs with the

latter [22-25] and that the genetic method can yield more precise

results as well as information on group membership and

movements [26]. Furthermore, studies evaluating genetic cap-

ture-recapture estimators using simulated data or direct counts of

individuals have found them to have a high degree of precision

and accuracy in most situations [27-30].

Currently, the vast majority of our knowledge on the behavior

and ecology of chimpanzees comes from long-term studies on the

eastern and western subspecies (Pan troglodytes schweinfurthii and P.t.

verus, respectively) [31]. Very little is known about central

chimpanzees (P.t. troglodytes), as continuous, long-term habituation

and study began only recently [31-34]. All chimpanzee popula-

tions appear to share some basic characteristics including male

philopatry, fission-fusion social grouping and territoriality, with

males actively defending their group’s territory through boundary

patrols and by making incursions into adjacent territories and

aggressing neighbors [31,35,36]. Without habituation we would

know virtually nothing about the life history patterns and

behavioral ecology of wild chimpanzees. However, it requires

years of intensive work and is generally accomplished for only one

or a few chimpanzee groups in any area. Furthermore, although

the presence of researchers has been shown to have a positive

impact on the conservation of apes [6,34,37,38], the possibility of

lethal disease transmission from human observers to apes has

become an increasing concern at several sites [6,12]. Thus, ways of

maintaining a research presence with minimal disruption is a

desirable goal of future research initiatives so that multiple,

adjacent ape communities can be studied without habituating all

groups under investigation.

Non-invasive genetic sampling of apes offers a complement to

traditional field-based approaches for understanding some aspects

of wild chimpanzee society. Studies on kin relationships and

patterns of relatedness within and between social groups [39-44],

relative levels of genetic diversity [45,46], and community

composition [32,47] have all been undertaken using non-invasive

sampling on habituated and unhabituated eastern and western

chimpanzees. These studies feature very limited sampling of

adjacent groups because only a single or few habituated groups are

studied, or because group membership is unknown due to the

fission fusion social system of the species. Repeated genetic

sampling over space and time can be used to estimate group sizes

of multiple unhabituated ape groups over a larger area, thus

allowing for a better understanding of their population dynamics

[26].

In this study, we aimed to estimate the number of chimpanzees

and their distribution into groups in a 132 km2 area of Loango

National Park, Gabon using the genetic capture-recapture

method. To do so, we amplified 8 rapidly evolving, highly

variable, autosomal microsatellite markers from central chimpan-

zee faecal samples collected opportunistically over a four-year

period, which allowed us to reliably distinguish even closely related

individuals. Because chimpanzees are male-philopatric with males

remaining in their natal community for life, we also amplified 13

Y-chromosome microsatellite markers for all males. We hypoth-

esized that the resulting paternally inherited haplotypes should be

the same or similar within groups, while differing between groups,

as has been previously observed in a study of multiple communities

of eastern chimpanzees [45]. Using the autosomal genotypes from

all individuals and Y-chromosome haplotypes from identified

males, we determined the number of chimpanzee communities in

the area, minimum group membership, and minimum territory

size, and along with data from the field, identified repeated cases of

intergroup violence.

Materials and Methods

Study site and sample collection
Samples were collected across the Loango Ape Project research

site, a 132 km2 area in the central sector of Loango National Park,

Gabon [32]. The study area contains sympatrically-living central

chimpanzees and western gorillas (Gorilla gorilla gorilla) and is part

of the westernmost distribution of both sub-species.

Between February 2005 and July 2008, two to four field teams

conducting ape habituation and biomonitoring activities in the

study area opportunistically and unsystematically collected up to

three-day-old chimpanzee faecal samples; due to the presence of

dung beetles, rain and maggots, ape faeces do not persist for more

than three days at Loango. Faeces were preserved using the two-

step ethanol-silica procedure [48]. The geographic coordinates of

each faecal sample were recorded using a Garmin GPSMapH 60

or 60CSx.

A total of 452 putative chimpanzee samples were collected from

beneath night nests and from where chimpanzees had defecated as

they moved through the forest during the day [26]. As previously

described in detail [26], we included our putative chimpanzee

genotypes and 13 genetically identified gorilla genotypes from the

study site in a STRUCTURE 2.1 Bayesian model-based clustering

program analysis [49] to confirm that samples were of chimpanzee

origin and not misidentified gorilla faecal remains. These analyses

revealed that a small proportion (5%) of chimpanzee faecal

samples were misidentified in the field as being of gorilla origin

and (2%) vice versa, resulting in a total of 444 collected

chimpanzee samples.

DNA extraction, quantification and amplification
Faecal samples were extracted from one month to one year after

collection, using the QIAmp Stool kit (QIAGEN) with slight

modifications [48]. DNA quantification was performed as

described in [50]. To determine the sex of the individuals, Three

to four independent amplifications from each DNA extract were

performed for a segment of the X-Y homologous amelogenin locus

in a one-step polymerase chain reaction (PCR) which allows for

sex identification of the samples [51]. Extracts that failed to

amplify at the amelogenin locus were not analyzed further. For all

other extracts, at least three independent amplifications from each

DNA extract were performed at 8 microsatellite loci (Table S1,

[26]) along with a minimum of five negative controls, using a two-

step multiplex PCR method described in detail elsewhere [52].

Extracts that produced genotypes at three or fewer loci after the

first set of PCRs were no longer used. Some low-quality extracts

which yielded confirmed alleles at four or five loci after six

independent PCR amplifications were run in quadruplicate in a

60ml two-step multiplex PCR as described in [26]. In a few cases,
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extracts still amplified poorly and only one of the two alleles could

be confirmed for some loci, making it impossible to assess whether

the samples originated from one, or multiple individuals.

Assuming that these loci amplified poorly because of locus-specific

DNA degradation, these extracts were genotyped at 3 additional

autosomal microsatellite loci known to amplify in chimpanzees

(D1s1622, D1s1656, D4s1627,[52]) with the intent of obtaining

more genotypic information for the samples.

At least one sample from each male individual identified in the

data set was further genotyped at the 13 Y-chromosome loci

previously described in [32] (Table S2) using a two-step multiplex

PCR method detailed in [52]. Nested reverse primers were

designed for the Y chromosome loci for use in the second step of

the multiplex PCR, as nesting primers is theorized to improve

multiplex amplification success ([53], Table S3).

Up to four different PCR products were combined and

electrophoresed on an ABI PRISM 3100 Genetic Analyser and

alleles were sized relative to an internal size standard (ROX

labeled HD400) using GeneMapper Software version 3.7 (Applied

Biosystems). Heterozygous genotypes were validated by observing

each allele in two or more independent reactions and depending

on the quantity of DNA in the extract, homozygous genotypes

were confirmed in up to five independent PCR amplifications

[52]. Furthermore, Y-chromosome alleles were corroborated in at

least two independent PCRs. To visualize the genetic distances

and relationships between the Y-chromosome haplotypes, Net-

work 3.0 (www.fluxus-engineering.com) was used to construct a

median joining haplotype network with all loci equally weighted.

Discrimination of individuals
We used CERVUS 3.0 to identify independent samples with

matching autosomal genotypes. We estimated the minimum

number of autosomal loci necessary to obtain a PIDsibs value of

#0.001 [54] and thereby attain high confidence that any two

matching samples originated from the same individual and not

from full-siblings. Matching genotypes were then given a

consensus ID (‘‘C’’ followed by a number) and composite genotype

for use in subsequent analyses. Genotypes from different samples

mismatching at three or fewer loci were re-examined for possible

genotyping errors and in some cases additional genotyping was

undertaken to resolve any ambiguities.

Chimpanzee group composition and minimum territory
size

The number, composition and minimum territory size of

chimpanzee groups were determined using the following criteria

(illustrated in Figure 1). First, as in [26], samples from individuals

collected on the same day at the same GPS location (same nest site

or multiple fresh faecal remains found together) were considered to

belong to individuals from the same group.

Second, as chimpanzees are a patrilocal species we hypothesized

that if males of each community carry a unique set of Y-

chromosome haplotypes as suggested by previous research [45],

then these groups of Y-chromosome haplotypes would cluster

together according to chimpanzee territories. We coded all male

samples by their Y-haplotypes and plotted the sample collection

locations onto a map of the study area using ESRIH ArcMapTM 9.2.

We then drew minimum convex polygons (MCPs) around each

unique set of haplotype clusters using the MCP tool implemented in

the Hawths Analysis Tools v. 3.26 software package.

Third, females and males found within a given Y-chromosome-

delineated MCP community were attributed to that community,

as we assumed no territory overlap. Individuals found in

association with samples from different group affiliations over

the study period could not be attributed to any community and

were not used in MCP construction. When a female was found

both within and outside of an MCP, the MCP was redrawn to

include the exterior female data points. The area covered by the

final MCP was considered the minimum territory size for that

chimpanzee community.

If females did not fall into any MCP and were either found

alone, with other females who were also not attributed to any

group, or from a collection site where only the one sample

contained usable DNA, then they could not be attributed to any

group. Because a dead individual has ‘left’ the population this

violates the assumption of closure in our population and we do not

include individual C12 (known to have been killed in an

intercommunity attack in August 2005 [32]) in the mark recapture

calculation. The individual is however relevant to the investigation

of group dynamics and is included in the determination of group

membership.

Chimpanzee genetic capture-recapture population
estimation

Grouping all samples into a single-sampling session scheme and

using individual genotypes that were identified from one (initial

Figure 1. Determination of chimpanzee group composition
and minimum territory size. Each letter represents an individual’s
genotype and its sampling location over the course of the entire study
period. Females are denoted by R, males are denoted by =. Underlined
samples were found at the same location on the same day. (i) Relative
geographic locations of samples from individuals A through F (ii)
Assuming that individuals found together belong to the same group,
here male B links together samples A and C, thus A,B & C are all
members of a single community. (iii) If males B, E & D all carry the same
Y-haplotype we assume they belong to the same community and draw
a minimum convex polygon (MCP) around these individuals. As
chimpanzees are territorial, we assume that females found within this
MCP belong to the males’ community. Thus, individuals, A, B, C, D & E all
belong to the same community. (iv) Because female C was found within
the Y-haplotype defined MCP at one collection event, we can extend
the MCP to include any other sampling events of female C. By doing so,
female F now also falls within the MCP of the group so that individuals
A, B, C, D, E & F all belong to the same group. See text for exceptions to
these rules.
doi:10.1371/journal.pone.0014761.g001
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capture) or more (recaptured) samples, we calculated a genetic

capture-recapture estimates using the maximum likelihood two

innate rates model (ML-TIRM) estimator implemented in the

software Capwire (www.cnr.uidaho.edu/lecg) [27]. The approach

assumes a closed population and a recapture probability equaling

the capture probability but also accounts for capture heterogeneity

as it divides individuals into those with high or low capture

probabilities [27]. Capwire calculates 95% CIs using the

parametric bootstrap [27]. In a previous study where gorilla

faecal samples were collected with the same methods as in this

work, it was found that due to heterogeneity in the opportunistic

sampling protocol the ML-TIRM estimator is the most conserva-

tive of the available published estimators [26], while the other

methods (rarefaction curve [55], sequential Bayesian estimator

[28] and ML-Even Capture Model implemented in Capwire [27])

appear to underestimate the population size ([26] and unpublished

data).

Calculating a population estimate using samples collected over

the entire four-year study period may violate the assumption of

closure in our models. Thus, to compare inferences made over the

entire study period with those from a more restricted time period

(and consequently smaller spatial area), we calculated a population

estimate using samples collected from February 2005 to June 2008

as well as a population estimate from samples collected from each

year separately.

Results

Discrimination of individuals
In total 202 chimpanzee samples yielded usable genotypes,

resulting in a 46% (202/444) extraction success rate over the four

year period. Extraction success was not obviously related to time of

year (data not shown) and was consistently low every year, ranging

from 41% (in 2007) to 63% (in 2005).

Genotypes from the 202 samples were on average 98.9%

complete with 88.6% of extracts (179/202) genotyped at all eight

loci and 9.9% genotyped at seven loci. After identifying matching

genotypes from multiple samples and assigning consensus names

to the matches, genotypes from the resulting 121 chimpanzees

were on average 99.5% complete (Table S1).

In all cases where two or more samples produced identical

genotypes at seven or all eight loci, we obtained a PIDsibs value of

#0.001, strongly suggesting that in these cases the samples did

indeed come from the same individual and were not derived from

full-siblings who happened to be identical at these loci. Two

samples C74 and C120 produced confirmed genotypes at 6 of the

8 loci with only 1 allele confirmed at the other two loci. However,

both of these samples mismatched all other samples at a minimum

of 4 loci so we are quite certain that they represent unique

individuals.

The rates of allelic dropout and the appearance of irreproduc-

ible, sporadic alleles were calculated and found to be on average

16% and 2% per PCR, respectively. Using the multiple tubes

approach with DNA quantification we estimated the number of

independent PCRs necessary to ensure with .99% certainty that

homozygote genotypes are authentic and not the result of allelic

dropout [50,52]. We found that 4, 3 and 2 independent PCRs for

extracts containing 1–10 pg/ml, 11–25 pg/ml and more than

26 pg/ml DNA concentrations, respectively were required.

Furthermore, we examined the mismatch distributions for the

complete set of genotypes (up to 11 autosomal loci and the Y-

haplotype, Figure S1) and found that no individuals mismatched at

only one locus and only two pairs of individuals mismatched at two

loci and these were confirmed through PCR replication as

recommended [20,56-58]. Furthermore, in cases where multiple

samples from the same male were genotyped at the Y-

chromosome loci, the resulting haplotypes were always identical

for any given male, further indicating a low-level of genotyping

error. We are thus confident that the number of single captures we

obtained in the study reflect the actual number of individuals

present in the population and are not an artifact of genotyping

error.

Chimpanzee Y-chromosome haplotypes
Six of the 13 Y-chromosome microsatellite loci under

investigation were polymorphic, although only two alleles were

seen at each of these six loci (Table S2). After combining

haplotypes generated using different samples that proved to

originate from the same individual, individual haplotypes were on

average 95.1% complete. Nine haplotypes were observed in total

and labeled from A to I. Each haplotype was observed from at

least two samples except haplotype I, which was observed in only

one sample (C134). Because of the unique allele this sample

exhibited at locus Dys510, six successful PCRs were used to

confirm the haplotype. Due to the low amount of variation

detected with the Y-chromosome loci, haplotypes often differ by

only one mutation and five mutations at most (Figure S2).

Chimpanzee group composition and minimum territory
size

Groups were first identified by visually evaluating whether Y-

chromosome haplotypes of the 58 males (N = 92 observations) in

the study area clustered geographically. Males carrying haplotypes

E, F and H appeared to each cluster geographically to the

exclusion of all other haplotypes (Figure 2). MCPs were drawn

using the geographic location of the males from each haplotype

group (groups are named according to the Y-haplotype(s) that

define them). As only two males, sampled once each, carried the H

haplotype no MCP was obtained.

The 20 males carrying haplotype B also clustered to the

exclusion of all other male haplotypes except in one instance

where the male with haplotype I (C134) was found with three

males with haplotype B (C103, C105, C106) (Figure 3). We

therefore consider group BI to include all males with haplotype B

and the male with haplotype I, as well as all the females that fall

within the group BI MCP.

Similarly, haplotypes D and G co-occur within a very small

geographical space (Figure 2), although with only two sampling

locations per haplotype it is not possible to observe clustering of

the two haplotypes and it is parsimonious to assume that these two

haplotypes belong to a single group, DG.

As shown in Figure 2, most of the group C MCP occurs within

the southeastern portion of the group A MCP. This overlap is

primarily driven by male C45 (southeastern-most point of MCP

A). We consider groups A and C separate, as we assume that

groups containing more than one haplotype should not show

geographic differentiation of the two haplotypes. In other words, if

males with the A and C haplotypes belonged to the same group,

we would expect the C haplotypes to be present in more than just

the small southeastern portion of the A territory.

The 47 females falling within these MCPs were considered to

belong to their respective Y-haplotype defined groups. Four

females (C14, C22, C29 and C62, see below) had ambiguous

group affiliations and 13 females (listed at the end of Figure 3) were

all found outside MCPs and could not be attributed to any group.

Behavioral and genetic evidence also suggest that groups A and

C are distinct entities. In addition to the purported August 2005

killing of C-haplotype male C12 by group A males reported in

Chimpanzee Genetic Monitoring
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[32], other observations suggest intercommunity violence between

groups A and C. In June 2006 and June 2007 there were two

probable infanticides in the group A and C overlap zones (Figure

S3). The genetic tracking evidence also suggests interactions

among members of groups A and C. Females C14 and C22 were

first found in association with group C individuals and later on

within the group A MCP (Figure 3, Figure S3). Finally, haplotype

C male C79 was initially found in the center of the haplotype C

MCP then in the northeastern limit of group BI’s MCP and then,

as described above with a haplotype A male (C136) (Figure S3).

Chimpanzee males have rarely been observed to transfer between

groups even in the case of group dissolution [36,59,60], making

the tracking of this male highly intriguing. Similarly, female C29

was found first with a B haplotype male and then later on with

three C haplotype males and another female (C62) (Figure 3).

Thus, C29 and C62 were not attributed to any group (Figure 3),

the behavioral data from the collection site also suggests a possible

intercommunity encounter between groups BI and C as sprayed

diarrhea and several broken and partially uprooted samplings

were found on site. Samples collected on these dates were not

included in MCP construction.

In sum, seven groups were identified (A, BI, C, DG, E, F and

H), however only groups A, BI and C were detected on more than

10 occasions (89, 47 and 11 times, respectively), making inferences

about minimum group size and territory size limited to these

groups. Thus, minimum group size ranged from 7 to 47

individuals, and minimum territory size ranged from 2.6 km2 to

45.0 km2 (Table 1).

Chimpanzee genetic capture-recapture population
estimation

Of the 202 chimpanzee samples from the study site yielding

usable genotypes, there were 13 instances of samples collected at

the same location and on the same day as the other samples

representing the same individuals; these cases were collapsed into

single captures. Of the 83 samples collected in 2007, 61 unique

genotypes were identified. The number of faeces successfully

genotyped per individual ranged from 1 to 6 (mean 1.56, SD 1.05)

Figure 2. Map of Loango research site, geographic location of all faecal samples in study and the seven Loango chimpanzee
groups. Males are designated by their Y-chromosome haplotype (uppercase A-I). Females are designated by the lowercase letter(s) of the group in
whose minimum convex polygon (MCP) they were found (a, bi, c, dg, e, f or h). Females that did not occur in any MCP or that were found in
association with more than one group throughout the study are represented by black circles. In cases where females were found both within and
outside of a given MCP, the MCP was enlarged to include the ‘‘exterior’’ geographic location of the female. MCPs represent minimum territory
boundaries of each chimpanzee community. Area of MCPs stated in parentheses in legend. For group H (southern most points) only 2 individuals
were identified and so no MCP could be drawn. Inset, map of Africa with Gabon highlighted in white, arrow indicates location of Loango field site.
doi:10.1371/journal.pone.0014761.g002
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Figure 3. Loango chimpanzee groups and composition over the 4-year study period. ID is consensus name given to matching
chimpanzee genotypes. In row ‘‘sex’’, M = male, F = female. Y-hap refers to the Y-chromosome haplotype of the male individual. Y-hap MCP is the
group membership identity of each individual based on their exclusive inclusion in any of the Y-haplotype defined MCPs. B?/A? means individual may
belong or have belonged to either group B or A over the study period. A?/C? individual may belong or have belonged to either group C or A. ‘‘?’’
indicates females could not be attributed to any group. Grey boxes bound first and last instance when group members detected over the 4-year
study period.
doi:10.1371/journal.pone.0014761.g003

Table 1. Summary of minimal inferred group composition and minimum territory size.

Group
Minimum #
individuals Minimum # males

Minimum #
females

Minimum territory
size

# occasions group
detected

A 47 21 26 45.0 km2 89

BI 35 20 15 33.9 km2 47

C 7* 3* 4 2.6 km2 11*

DG 4 3 1 n.d, 5

E 4 3 1 n.d. 4

F 4 4 0 n.d, 4

H 2 2 0 - 2

ungrouped females 17 - 17 - 24

ungrouped males 2 2 - - 4

Total 122* 58* 64 - 190*

Group H was only detected twice, so no minimum territory size could be calculated. n.d. – not determined as groups were sampled fewer than 10 times.
*- an additional dead male (C12, from group C) was identified in a previous study and included in the totals presented.
doi:10.1371/journal.pone.0014761.t001
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for the entire study period and from 1 to 5 (mean 1.36, SD 0.80)

for the 2007 sampling period, with the majority of individuals

sampled only once in either sampling schemes (entire study period:

84/121; 2007 sampling period: 47/61) (Figure 4). In 2005, 2006

and 2008 only 39, 35 and 32 usable samples were collected

respectively with very few recaptures obtained (15, 8 and 2

respectively), making a reasonable and biologically relevant

population estimate from these sampling years unfeasible.

Applying the ML-TIRM population estimator, resulted in a

point estimate of 283 (CITIRM-AllData: 208–316) chimpanzees using

the 132 km2 area over the entire study period and 176 (CITIRM-

2007: 113–220) chimpanzees using a 73 km2 subset of the study

area in 2007 alone. By adjusting for area sampled, we obtain

similar density estimates from the entire data set and the 2007

data: 2.14 (CITIRM-AllData 1.58–2.39) chimpanzees/km2 and 2.41

(CITIRM-2007 1.55–3.01) chimpanzees/km2, respectively. The

precision of the estimates, measured as the entire width of the

95% confidence interval divided by the estimate itself, was 38%

and 61% of the point estimate for the entire data set and 2007

samples, respectively.

Discussion

Y-chromosome haplotypes
Of the 13 Y-chromosome loci genotyped, only six were variable,

and then, only dimorphic. This low amount of Y-chromosome

variation differs from the pattern observed in eastern chimpanzees

in Kibale forest, Uganda [45] and western chimpanzees in Tai

National Park, Cote d’Ivoire (G. Schubert, personal communica-

tion) when the same set of genetic markers were used. As the Y-

microsatellite loci were originally developed in humans [61] and

further refined in bonobos [62], it is unlikely that these markers are

more variable in eastern and western chimpanzees due to

ascertainment bias. The low variability could be due however to

various, non-mutually exclusive reasons. First, a small number of

chimpanzees may have colonized the area in the recent

evolutionary past and subsequently fissioned into the various

groups present today. In this scenario, mutational processes have

simply not had enough time to generate the high amount of

variation observed in other chimpanzee populations. A recent

colonization is feasible considering the relative remoteness of the

research area, bordered in the west by the Atlantic Ocean and the

east by a large lagoon. Had poaching or disease extinguished the

past chimpanzee groups in the area, or if the habitat only recently

became suitable for chimpanzees due to expansion of forest refugia

[63], a recent colonization of the area is a reasonable possibility.

Second, if male reproductive skew is much higher than that

previously reported for eastern [40,41,64,65] and western

chimpanzees [39,43], it is possible that paternally-related chim-

panzee male lineages can dominate reproduction and effectively

decrease the amount of Y-chromosome variation in the popula-

tion. Finally, a population bottleneck, past selective sweep across

all or part of the central chimpanzee Y-chromosome or other

evolutionary pressure not acting in eastern or western chimpan-

zees could also explain the low diversity of the Y-chromosome

haplotypes observed at Loango.

Chimpanzee group composition and minimum territory
size

As compared to other chimpanzee subspecies, very little is

known about social organization and grouping patterns in central

chimpanzees [31,34,36]. Using autosomal and Y-chromosome

genetic data from non-invasive samples collected opportunistically

over four years, we show that information regarding group

number, minimum composition and territory size can be obtained

without direct observation. We were able to identify seven groups

in the study area by using the geographic clustering of Y-

chromosome haplotypes, which we hypothesized would occur if

haplotypes were not shared between groups as documented in

eastern chimpanzees [45]. Four of the groups (A, BI, C and DG)

appear to utilize the majority of the research area whereas the

territories of groups E and F probably extend beyond the

northwestern limits of the research area and group H’s territory

extends southeastward. Approximately 38% of females could not

be attributed to any group however, emphasizing the need for

extensive sampling in studies of this kind in order to obtain

accurate group membership information.

Several considerations suggest that the MCPs derived here may

underestimate the territory sizes of the chimpanzee groups at

Loango. MCPs can overestimate the territory size of species by

including areas that are not used by the individuals [66]. On the

other hand, in our study, 54% of samples did not contain sufficient

amounts of DNA for genetic analysis so some samples falling

outside the obtained MCPs could not be used. Additionally, we

assumed and observed little territory overlap, although generally it

is reported to be 7.5% or more [67]. It appears that for the two

groups for which we have the most data, A (45.0 km2) and BI

(33.9 km2), the territories are within the range of known

chimpanzee territory sizes (13–50 km2 in western chimpanzees

and 4–38.3 km2 in eastern chimpanzees, [31]. It is possible that

haplotypes A and/or B are present in two adjacent groups, so that

neither haplotype delineates a single group but two parts of a

recent group fission [68]. Arguing against this possibility is the

occurrence of males C18, C19 and C23 in the northern/middle

part of the territory and in the coastal/southern part of the A

group MCP over the course of the study, thus suggesting they are

using the majority of the A territory and are not restricted to any

one part of it (Figure S4). Using samples only from males with the

A haplotype that were sampled more than once to construct the A

MCP, we still obtain a moderate territory size of 24.4 km2 (Figure

S4). The four samples collected in the northern part of the A

territory were only sampled once so confirming their membership

in, and the entire territory size of, group A remains more tenuous.

Figure 4. Frequency of detection of individual chimpanzee
genotypes during the study period.
doi:10.1371/journal.pone.0014761.g004
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Individuals from group BI were rarely recaptured so no samples

were captured in both the southern and northern part of the BI

MCP. Chimpanzees living in savanna-woodland or savanna-

riverine forest habitats tend to have larger territories than true

forest dwelling chimpanzees [31]. Loango contains heterogeneous

habitat which may partially explain why the territories may be as

large as some of the bigger ones observed in other chimpanzee

populations.

Most of group C’s small territory is overlapped by group A’s

territory. The circumstantial evidence suggests that group A is

expanding its territory and replacing group C by making

incursions into group C’s territory and killing group C males

and infants. A similar pattern of group extinction was observed in

two eastern chimpanzee populations. At Mahale, one group (M)

was suspected of exterminating the males of another (K), co-opting

many of the group females and expanding into its territory over a

12 year period [59,69]. Similarly, at Gombe, after the fissioning of

the main study group into two distinct entities, the Kasakela group

exterminated the males of Kahama group, expanded into their

territory over the course of four years and acquired at least one

female from the exterminated group [68,70]. Additionally, at a

third eastern chimpanzee field site, the Ngogo study group has

been killing neighboring individuals over the past 10 years and

subsequently expanding into their territory [71].

As an alternative explanation for the apparent overlap between

groups A and C, it has been suggested that neighborhoods exist in

some chimpanzee communities [72,73], and so it is theoretically

possible that males with haplotype C constitute a small

neighborhood within a community that includes males with

haplotypes A and C. Intragroup infanticides and violence have

been reported for chimpanzees in other populations [74,75],

making this scenario possible. However, the distribution of Y-

chromosome haplotypes in chimpanzee communities known to

exhibit male neighborhoods has not yet been investigated so it is

unclear whether a geographical clustering of haplotypes, as

observed here, would be expected. The location of aggressive

encounters in the zones of territory overlap (Figure S3), is also

indicative of inter-, rather than intra-, group dynamics [36,76].

This suggests that groups A and C are indeed distinct, with group

C males and infants possibly being exterminated by group A

individuals, and group C females moving to group A (i.e. females

C14 and C22) or other groups (i.e. females C21, C43, C44 and

C48 were never recaptured after May 2006) and group A

expanding into the group C’s territory. This pattern is highly

similar as to what was observed in the K group extinction at

Mahale [59,69] and suggests that such intense intergroup

aggression is also part of the central chimpanzee’s behavioral

repertoire [32,36].

Chimpanzee population estimate by genetic analysis
We show in this study that despite reliance on opportunistically

collected faecal samples with poor extraction success (46% on

average), we can obtain useful population estimates, albeit with

moderate 95% confidence intervals. As gorilla samples collected in

the same manner from the same site over a similar time period had

a higher success rate (82%, [26]), and chimpanzee samples from

other research sites have similarly high success rates [43,48], we

suspect that some component of the Loango chimpanzee diet

reduces preservation and/or inhibits amplification of chimpanzee

DNA [77,78].

Using the ML-TIRM method we obtain a population estimate

of 283 chimpanzees (ranging from 208 to 316 individuals) using

the Loango study area from 2005–2008. Chimpanzees are long-

lived primates with slow life histories. Adult deaths and female

dispersals are rare events and chimpanzee females give birth only

once every 5 to 6 years [31]. Furthermore, infants (0–5 years) are

likely absent in our sample as faecal samples from this age class are

notoriously difficult to obtain even for habituated chimpanzees.

Thus it does not appear that using all 4 years of data grossly

violates the assumptions of closure inherent in the population

estimation model since the estimates from the entire data set and

from just the 2007 samples were similar when correcting for area

sampled. Similarly, in an analysis of the sympatric western gorilla

population at Loango, we previously showed that using a three-

year dataset gave a similar population estimate as when using only

a given 12 month period [26]. Knowing that samples collected in

successive years can be combined to obtain a population estimate

is encouraging, as no estimate could be calculated for three of the

four study years because an insufficient number of samples were

available due to the poor extraction success rate. We can state with

confidence that at least 122 chimpanzees (including the dead male

identified in [32]) used the research site from 2005–2008 as this

was the number of unique genotypes identified in the area.

The density estimate of 2.14 chimpanzees/km2 (range: 1.58–

2.39) is in the upper range of those previously reported for other

central chimpanzee sites [0.03–2.78 chimpanzees/km2, 14]. It is

important to note however that published chimpanzee density

estimates are from nest surveys which have been shown to

underestimate the density of chimpanzees by 70% or more when

compared to estimates obtained from direct observations in

eastern and central [14] but not western chimpanzees [17,79].

This implies that the true densities of chimpanzees may be higher

than currently estimated with traditional methods.

Most individuals were only captured a single time, resulting in a

population estimate with moderate precision. Consequently, the

number of samples genotyped was smaller than the number of

individuals estimated to live in the population for both sampling

schemes. Previous studies have shown that genotyping at least

twice as many samples as the number of individuals that exist in

the study population dramatically decreases the width of the 95%

confidence interval surrounding the obtained population estimate

[26-28].

Despite these limitations, the precision of the genetic estimate is

comparable to that of traditional nest count estimates used to

evaluate ape population size, for which 95% confidence interval

widths (from lower to upper confidence bound) of 40% to 63% of

the estimate are reported [14,15]. Similarly, in our study, using the

ML-TIRM model, the total width of the 95% confidence interval

surrounding the estimate was 38% of the estimate when applied to

the entire four years of data and 61% when using the 2007 data

only. Furthermore, with the genetic method, we obtain an

absolute minimum number of individuals in the study area and

can obtain additional data on minimum group composition and

territory size, as well as track individuals over time.

Recommendations for future ape genetic surveys
We show here that genetic monitoring provides a useful and

informative complement to field-based research. Although the 444

chimpanzees samples used here were collected opportunistically

over a four-year period, had the focus of a team (or teams) been to

search out and obtain faeces, the same number of samples could

have been collected over a much shorter period of time. On the

other hand, collecting the samples over time allowed us to monitor

the movements of individuals. The cost of collection materials and

laboratory materials for genetic monitoring are not prohibitive but

neither are they trivial. A similar study to the one presented here

(695 gorilla samples collected, 384 samples extracted, and 16

microsatellite markers amplified) within the context of a pre-
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existing field infrastructure, estimated additional laboratory costs

for the analysis of the samples to be approximately 12,000 Euros

(not including the cost of labor, [23]). Opportunistic sampling can

be combined with the regular biomonitoring activities of park

rangers, reconnaissance walks, nest decay rate studies by

researchers, and/or during the maintenance of remote cameras

at field sites, to maximize the use of funds for field activities and

research. Without a pre-existing field infrastructure, the incurred

costs will be significantly increased, as transport, accommodations,

trained field staff, food, etc must all be brought into an area and

remain there for an extended period of time as researchers ensure

individuals are ‘‘recaptured’’ multiple times. We recommend

conducting a pilot study to evaluate sample extraction success,

since it can be a major limiting factor as evidenced in this study.

Recent advancements in extraction methods should also be

attempted if initial extraction success is low [80]. If the sample

success rate is extremely low or if samples are difficult to detect

and/or chimpanzee density is low, genetic monitoring with

opportunistic samples collected over a short period of time may

not be feasible. Combining efforts to collect samples for genetic

analysis with other new methodologies for detecting elusive species

such as scat-detecting dogs [81] and/or video camera trapping

[82] should also improve the effectiveness of genetic studies.

Further research should focus on validating the genetic capture-

recapture method by implementing it under different sampling

regimens in an area with a known number of apes. Alternatively,

an agent-based model could be used to evaluate the ideal sampling

strategy for genetic ape surveys while accounting for the grouping

patterns of apes, the variation in habitat types, ape density and

sampling area. For example, a recent modeling based approach

concluded that orangutan nest surveys can not provide reliable

population estimates [18].

For chimpanzees specifically, their fission-fusion social system

provides additional challenges to evaluating group composition as

samples from individuals in the same social group cannot be linked

together as easily as for gorillas [26]; especially if few samples are

collected or if extraction success is low. In this study, we used Y-

chromosome haplotypes to overcome this challenge, which

increases laboratory expenses, but provided us with several

interesting insights in the community composition and dynamics

at Loango. More extensive study of multiple known chimpanzee

communities is needed to examine the assumption that Y-

chromosome haplotypes are not shared between groups, while

very intensive sampling of unhabituated communities, by showing

overlap between the membership of sets of individuals found

together, will also serve to build on the analytical foundation

presented here. Some aspects of population dynamics such as

group extinction (observed here), extra group paternity (as

observed in some western chimpanzees,[39,43]) or moderate

territory overlap [36], may make it difficult to attribute some

individuals to groups. Most problematic is when males are not

identified from all areas, as then many females will go unaffiliated

if the recapture rate is low. With better sampling and/or sample

success, patterns observed so far only in eastern or western

chimpanzee populations could be evaluated for central chimpan-

zees. For example, if certain males or females are resampled across

the entire MCP of their respective groups, this would be

inconsistent with the presence of female and/or male neighbor-

hoods in communities of central chimpanzees, at least at Loango.

Genetic surveys can play an important role in assessing wild ape

population dynamics when used in addition to traditional surveys,

which provide a wealth of information on ape ecology and

anthropogenic disturbances. Traditional transect based nest-count

surveys can often give rapid assessments to conservation managers

that is not possible with genetic-based methods. However, even

though genetic surveys will increase the expense of a survey and

require increased time for analysis, we demonstrate that the

information gained from the additional time and expense is

worthwhile, even with opportunistic sampling and a poor success

rate. It is clear that opportunistic genetic sampling provides a

wealth of information and is a valuable biomonitoring tool for

elusive species and we highly recommend its inclusion in forest

monitoring activities in the future.

Supporting Information

Figure S1 Mismatch distributions for the Loango chimpanzee

genotypes. The majority of individuals were compared at 8

autosomal loci, however a subset were also compared at 3

additional autosomal loci. Y-chromosome haplotypes were also

compared for all the males (with the haplotype coded as a single

‘‘homozygous’’ locus). Values above columns represent number of

dyads in each locus category.

Found at: doi:10.1371/journal.pone.0014761.s001 (1.10 MB TIF)

Figure S2 Median-joining networks depicting the phylogenetic

relationships of Y-chromosomal haplotypes for the Loango

chimpanzees. Each circle represents one Y haplotype. Circle size

is proportional to haplotype frequency, with the smallest circle

representing a haplotype carried by one individual. * denotes

haplotypes found in group BI,ˆ denotes haplotypes found in group

DG.

Found at: doi:10.1371/journal.pone.0014761.s002 (2.31 MB TIF)

Figure S3 Movements of individuals C14, C22 and C79

suspected of moving between groups C and A and location of

suspected intergroup aggression (infanticides and adult male

killing). In June 2006, after following chimpanzee vocalizations,

we observed a group of eight chimpanzees that were displaying

and vocalizing. Once the chimpanzees had dispersed from the site,

bloodspots, chunks of flesh and an infant foot, were found. In June

2007, we observed several chimpanzees vocalizing with hair

bristled and appearing distressed. We found fresh blood and bone

at the contact site and upon following the group, one male was

observed eating what appeared to be an infant chimpanzee. In

both cases, diarrhea, a sign of stress, was present at the contact

sites. Female C14, originally found in early 2005 with females

otherwise associated with group C, was subsequently found in the

center of group A’s MCP in November 2006. Furthermore, female

C22 was found in June 2005 in association with haplotype C male

C32 and within the group C MCP in March 2005. She was then

found just north (within 300 m) of the group C MCP on three later

occasions (April 2006, June 2006, June 2008). In fact, her sample

from June 2006 was the only successfully genotyped sample from

the nine samples collected in the area of the infant killing described

above. In June 2008, C22 was sampled with two males: haplotype

C male C79 and haplotype A male C136. Male C79 was initially

found in the center of the haplotype C MCP in April 2007 but

then in the northeastern limit of group BI’s MCP in December

2007 and finally with C136 as described above. Inset: Map of

study site (figure 3).

Found at: doi:10.1371/journal.pone.0014761.s003 (1.17 MB TIF)

Figure S4 Minimum territory size of group A calculated using

male chimpanzee samples with Y-haplotype A that were captured

two or more times only. Males sampled more than once noted

with their consensus ID. Inset: Map of study site (figure 3).

Found at: doi:10.1371/journal.pone.0014761.s004 (1.03 MB TIF)

Table S1 Genotypes of 125 chimpanzees from Loango National

Park, Gabon. * individual C12 is an adult male chimpanzee that
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was killed in the study area in an intercommunity attack in August

of 2005 and genotyped in a previous study (Boesch et al 2007).

Found at: doi:10.1371/journal.pone.0014761.s005 (0.04 MB

DOC)

Table S2 The nine Y-chromosome haplotypes (Y Hap)

identified in the Loango Ape Project Study area. The 6

polymorphic loci are shaded in grey with the two alleles of the

locus in black or white.

Found at: doi:10.1371/journal.pone.0014761.s006 (0.03 MB

DOC)

Table S3 Primer sequences, annealing temperature, repeat type

and allelic size ranges of Y-chromosomal microsatellite loci. Ta:

annealing temperature for singleplex PCR. F: forward primer (the

forward primer used in the multiplex and singleplex PCRs are

identical except that the forward primer used in the singleplex

PCR is fluorescently labeled with FAM, HEX or NED dyes). R:

reverse primer. Rnest: reverse nested primer. 1: only nested

reverse primers were designed for this study, forward and reverse

primers are published elsewhere (Erler et al. 2004; Gusmao et al.

2002a; Gusmao et al. 2002b).

Found at: doi:10.1371/journal.pone.0014761.s007 (0.02 MB

DOC)
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